& 2> Colaiste na hOllscoile Corcaigh, Eire
University College Cork, Ireland

Conor Molloy
UCC Computer Science

A Cloud Visualization
Framework

Abstract

Cloud Computing Frameworks such as Open Stack have a
graphical user display, which shows textual information that
requires all users to know precisely all the details involved on how
to run a virtual machine. This style of management is tedious and
difficult to train new users. This can be avoided by constructing a
2D model of the cloud computing management to provide a better
experience for the user. In the model, each entity such as the
virtual machines, physical servers and the networks are modelled
as a 2D entity that can be manipulated by the user. In doing this a
user managing a cloud computing infrastructure no longer requires
commands or a web based interfaces. Instead it can be done by the
manipulation of 2D entities. In particular, an interactive 2D
modelling of a cloud infrastructure can be very useful for
monitoring, managing, designing, and planning for an existing
and/or new cloud and data centre infrastructure.

Declaration of Originality

In signing this declaration, you are conforming, in writing, that the
submitted work is entirely your own original work, except where
clearly attributed otherwise, and that it has not been submitted
partly or wholly for any other educational award.

| hereby declare that:

e this is all my own work, unless clearly indicated otherwise,
with full and proper accreditation;

e with respect to my own work: none of it has been submitted
at any educational institution contributing in any way to an
educational award;

e with respect to another's work: all text, diagrams, code, or
ideas, whether verbatim, paraphrased or otherwise modified
or adapted, have been duly attributed to the source in a
scholarly manner, whether from books, papers, lecture
notes or any other student's work, whether published or
unpublished, electronically or in print.

Acknowledgements

Thank you to Dr. John Herbert for all your help and advice you
gave me throughout the project.

Thank you to Dr. Dapeng Dong for all your help with all the
technical specific questions you answered and advice you gave to
me throughout the project.

Thanks to my family and friends for the countless times you all
helped me with this project.

Table of Contents

Contents

ADSEIACT ...
Declaration of Originality
Acknowledgements...........cccceveiennne
Table of Contents..........cccccevrennnee.
1 Introduction.........ccoceviieieiieniennns
1.1 Introduction...........cccervennnne
1.2 importance of my approach ..
1.3 Objectives of the project........
2 DESIgN ..o

2.1 What is Cloud Computing?...

2.2 What are the different types?

2.3 Why OpenStack?
2.4 Web apps and Servlets...........
3 ANAIYSES....ccveeiece e,
3.1 initial impressions.................
4 Implementationc.ccccevvenennne
4.1 Server Side Codecco.e.

4.2 System manipulation.............

.. 10

.. 11

.. 12

4.3 Graphical User Interface/ JavaScriptcccoovevvevievievicninsieniene, 22

A4 PrODIBIMS ...t 28
S EVAIUALIONS. ... 29
5. 1HTML validatingc.ccoeoveiiiiicic e 29
5.2 CSS Validatorcceiviiiiieieieis s 30
B3 SUMVEY ..ot 32
B CONCIUSIONS. ... 36
6.1 What has been accomplished? ..o, 36
6.2 What can be done NeXt?cccvvviiiiieieeeeese s 37
AAPPENTIX .t 39

Table of Figures

Table of figures Figure 1 The different cloud computing services......... 11
Figure 2 OpenStack diagramcccccveveiiiiecie s 13
Figure 3 Example of commands to run OpenStackc.ccocevercnennne 13
Figure 4Layout on how OpenStack API'SWOIKccccoovviiiicniinennn 14
Figure 5 Core OpenStack SEIVICEScoviviveiieieeiiite e 14
Figure 6 Optional OpenStack SEIVICES..........ccoereiereiiiinisie e 15
Figure 7 First user interface design.........ccocvvvereieieininise e 18
Figure 8 Code for how Servlet returned information...........c...cccccvenee.e. 19
Figure 9 Servlet code to get Flavour informationccccccevveienenn, 20
Figure 10 What Figure 9 OULPULScvvirirerieicieeeescscse e 20
Figure 11 How Servlet gathers information on imagesc.cccccevevee. 21
Figure 12 Figure 11 OULPULc.eccveeiee et 21
Figure 13 How data is sent to indeX.jSP Pagecccccvvvveeeveseeriesieeeeineans 21
Figure 14 doPost() method for suspending a Servercccceervevenen 22
Figure 15 Front page with N0 SErvers runningcccocevivevivenineeieeneeenns 23
Figure 16 Front page with a successful launchof a VM 23

Figure 17 OpenStack Horizon Dashboard showing the Virtual machines

GBI et 24
Figure 18 Output when VM iS PaUSEdcccereieieiiininicnicieeee 24
Figure 19 Horizon dashboard to show paused SErverccccccevvverneene. 25

Figure 20 Code for the drop functionality in JavaScript............cc.cccueu... 25
Figure 21 Warning message example from the application.................... 26
Figure 22 JQuery code for outputting POST to Servlet...........cccovveneeee. 27

Figure 23 Code from JavaScript on how images are drawn in to boxex 28

Figure 24 HTML 5 validator OULPULcooeriereiiieicicse e 30
Figure 25 CSS Validation OUIPUL...........ccoreiereriieeses e 31
Figure 26 Code from CSS validation output............ccccceevivrrivrnienieeneenn 32
Figure 27 QR code to survey shown on open dayccceevevveveevennenn, 33
Figure 28 Difficulty to complete taskccoeveieieiiiiiniiencec 34
Figure 29 graph for information usefulness.........ccccccvvvviiiinnie e, 34
Figure 30 Pie chart for previous eXperienCecccevevveveseeriesieeeesneans 35
Figure 31 Pie chart comparison of €aSeccceevviriiiiinieiiieiicns 35
Figure 32 Graph of speed of application.............cccceoviviiriiineicncee 36

1 Introduction

1.1 Introduction

Since 1979 when Steve Jobs and others at Apple began working on their
latest Graphical User Interface (GUI) concepts for the new
Macintosh computer, there has been a great demand for systems
run by buttons rather than command lines, cloud computing is no
exception. In the world of cloud computing, bringing online and
offline servers quickly is considered a job for the most advanced
technicians due to its incredibly complicated command line
required. Existing cloud computing technologies provide graphical
user interfaces to interact with users. Many of these systems such
as the current OpenStack dashboard and VMware’s VSphere use
textual data and graphical images. This style of management is
rather tedious and requires costly training to be able to operate. In-
depth knowledge is required about the particular network, flavour,
image and hardware configurations to be able to carry out simple
commands such as starting a server or shutting one down.

The aim of this project is to allow users with minimal experience in cloud
computing to be able to quickly and effectively launch servers to access
resources that are needed. The environment | will be working in is an
installation of OpenStack which was installed on the servers inside of
University College Cork (UCC). The OpenStack package allows the
installation of a base operating system on many different servers/PC’s
and permits a user to control them in a basic way via the online
dashboard. OpenStack makes it possible to be able to run API calls
through a programming language to control the OpenStack environment.
The next step is how to run these API calls when certain actions that are
familiar to the user are done.

1.2 importance of my approach

It can be very difficult for a new user to operate these simple commands
that can be vital to the success of a project so it is necessary to be able to
give users new and more intuitive ways so that they can operate as an
administrator on the cloud network. Instead of displaying textual data and
requesting the user to input every variable, the approach | developed is
to automatically display information depending on the configuration of
the cloud operation system, and to allow users to manipulate 2-D images
to do basic commands such as starting, pausing and deleting servers. As

9

OpenStack does not have a graphical user interface like this, I saw an
opportunity to develop something that hasn’t been done, that could
benefit the average user of OpenStack. (Omar SEFRAQUI, October
2012)

1.3 Objectives of the project

My objectives are to learn how OpenStack works and to gain insight into
how a cloud computing architecture is structured. After learning how a
cloud implementation of OpenStack works the next objective is to learn
how to gather the information needed to run a graphical user interface. |
will then work out how to send information to a cloud service that would
allow it to be manipulated in a programming language. The next step is
to figure out the best way to allow a user to run this programme with the
convenience of the user in mind. During this step, a graphical user
interface will need to be designed to allow basic commands to be sent to
the Cloud infrastructure by manipulating 2D objects in a familiar way.
Finally, my last objective is to develop the interface so it can be able to
display important information to the user in an intuitive and easily
understandable way.

2 Design

2.1 What is Cloud Computing?

Cloud computing is a general term for hosted services available
through the internet. Cloud computing is essentially a metaphor for
the internet. Cloud computing allows people to use computing
resources such as virtual machines, storage or applications as a
utility rather than having to set up the hardware and maintain it
themselves. A company can use a public cloud service such as
Amazon Web services to supply their cloud computing needs, or if
they specific requirements preventing them from going to a public
service they can set up their own private cloud computing service.
There are several benefits to cloud computing.

e Self-service: All end users of cloud computing software can
start any computing resources to achieve whatever goal
they want to achieve on demand. This eliminates the need
for an IT administrator to build and maintain each
individual request.

10

e Elasticity: Companies can scale up or scale down very
easily based on the demands put on the infrastructure. This
saves the need to have a local server running all the time
taking up resources even if it is not needed.

e Some online providers of cloud services like Amazon web
services offer customers a pay for use model that allows
customers the ability to only pay for the computing
resources used.

In the public cloud computing model customers only pay for the
resources they consume such as CPU computing power, the
amount of storage and the bandwidth of the connection. These are
paid on demand either charged by the minute or by the hour. This
comes at the cost of the customer having no control over the cloud
infrastructure.

With private cloud computing architecture the customer can use
their own architecture, or use the hardware from a data centre to set
up their cloud computing infrastructure. This gives the customer
more access to the management, control and security over the
cloud. Companies can also choose to use a hybrid system where
sensitive data or important workloads can be operated on in the
private cloud but operations that can vary in number that needs to
be scaled on demand can be operated by the public cloud
infrastructure. [1][2]

2.2 What are the different types?

GOOGLE DOCS NETSUITE
FRESHEOOKS GMAIL
SALESFORCE
BASECAMP

FORCE.COM
APF ENGIMNE
AZURE

RACKSPACE.COM
GO GRID

AWS

Figure 1 The different cloud computing services

11

There are generally three types of cloud computing services:
e SaaS (Software as a service)
e laaS (Infrastructure as a service)
e PaaS (Platform as a service)

SaaS or software as a service is when a provider “rents” particular
software to customers that have expensive license fees but for a
subscription based payment, or a pay on the go system. This
service can be very attractive to customers who want to have
access to enterprise software but only pay for what they actually
use without having to worry about maintaining, updating or
patching the software. Examples of SaaS are Salesforce CRM,
email (Gmail), Office 365, customer service and expense manager.

PaaS or platform as a service is similar to SaaS but is marketed at
developers. It provides a platform that allows developers to create
web applications easily and quickly without having to maintain the
infrastructure underneath it. Specifically, if a cloud service
provides an operating system, programming language execution
environment, database or a web server. Users access these services
via API’s, web portals or gateway software. Examples of PaaS
include Google app engine, AWS and Elastic beanstalk.

laaS or Infrastructure as a Service supply virtual server instances
and storage as well as API’s to allow users to transfer workloads to
the virtual machines. Users have a set amount of storage and can
stop, start, pause and resume the virtual machines as desired. laaS
providers normally supply set amounts of computing resources
(RAM and CPU cores) and storage that can be started and stopped
and that are labelled small medium and large for any image a user
might want to launch his or her application. Examples of laaS
include OpenStack and Amazon wen services.

2.3 Why OpenStack?

OpenStack is a free open sourced software platform for cloud
computing, that is mainly used as an laaS. It provides many
different features that can control hardware pools, can be made by
any manufacturer and can be diverse in nature. This allows the user
to take any computing hardware such as older model computers or

12

new servers and use them for storage processing and networking in
a data centre. This diversity of it hardware pool is one of
OpenStack’s unique selling points in the market for cloud
computing. (Juhani Toivonen)

Your Applications

= OPENSTACK

OpenStack Dashboard

Compute Metworking Storage

OpenStack Shared Services

Standard Hardware
Figure 2 OpenStack diagram
Users can manage the OpenStack Infrastructure either through

command line tools, through the optional web dashboard or
through RESTful API’s.

Compute (nova)

List instances, check status of instance

% openstack server list

List images

% openstack image list

Create a flavor named m1.tiny

% openstack flavor create --ram --disk --vcpus | ml.tiny

List flavors

% openstack flavor list

Boot an instance using flavor and image names (if names are unique)

% openstack server create --image IMAGE --flavor FLAVOR INSTANCE_ NAME

% openstack server create --image cirros-8.3.5-x86_64-uec --flavor ml.tiny \
MyFirstInstance

Figure 3 Example of commands to run OpenStack

Currently more than 500 companies have joined the OpenStack
project. OpenStack is very flexible with hardware and can be
configure to be any size while still being scalable. It achieves this

13

by using API’s for each service it provides, these services
communicate with each other to make it like a modular service.

Dashboard

Provides

Ul for Provides Provides Ul for
/ Ul for Ul for
‘w / Provides \
Network Auth for
Provide -
w network @
connectivity ~ Stores @ Stores disk
for " imagesin " files in
Image
o S Provides
E— volumes
Block |« for :
X Provides
Storage Provides Provides Auth for

http//ken. pepple.info

D Auth for Auth for
L Provides
Auth for b 7
Provides v & @ 1 ©
Auth for \ / oY 3h

Identity

Figure 4Layout on how OpenStack API's work

Each one of these services has a different APl name that it refers to
itself by, for example the compute service is called “Nova”, the
network API is called “Neutron” and the imaging catalogue is
called “Glance”.

=g g «<§ =4 = 4o

SWIFT KEYSTONE NOVA NEUTRON CINDER

Object Storage Identity Compute Networking Block Storage

Figure 5 Core OpenStack services

These are all examples of some of the core services that
OpensStack provides but OpenStack also has a range of optional
services including as telemetry, MapReduce, DNS and Database.

14

Figure 6 Optional OpenStack services

2.4 Web apps and Servlets

HORIZON
Dashboard

TROVE

Database

ZAQAR

Messaging Service

BARBICAN

Key Management

CONGRESS

Governance

CEILOMETER

Telemetry

SAHARA

Elastic Map Reduce

MANILA

Shared Filesystems

MAGNUM

Containers

Java Servlet is principally a Java program that can be run on a
server. This allows a user the ability to run dynamic web projects
written in Java. This is advantageous as the most comprehensive
and powerful API’ library for OpenStack is written in Java and it is
called OpenStack4J. OpenStack4j is an open sourced OpenStack
client that has all the major API abstractions; it is straight forward
and easy to learn with very detailed error reporting. The main

advantages of OpenStack4J are:

Expected results: the data coming back from the server is

always what is to be expected.

Concrete API: all the interfaces for the different parts are
well-defined which means a user does not have to refer to

the implementations.

Tested: The library has been used in several projects and

has been tested fully to ensure it is working properly.

Exception Handling: The errors provided by the API
library shows in great detail the exact cause of the error in
the code. It does not just return an error 404 when an item

isn’t found.

The use of the Servlet in this project allows the use of a JavaScript
front end design that is powerful enough to allow the manipulation

15

HEAT

Orchestration

IRONIC

Bare-Metal Provisioning

DESIGNATE

DNS Service

MURANO

Application Catalog

of images and then to output a request to a servlet running
OpensStack4J library and receive data in response. No JavaScript
front end library was used in this project, but JQuery was used to
send http: POST request to the servlet in order to get it to run the
commands. (Juhani Toivonen)

3 Analyses

3.1 initial impressions

The project specified “The main part of the project involves
developing a visualization frontend to display the structure layout
of a cloud infrastructure and show (in near real-time) the various
levels of activity occurring in a cloud environment.” This IS quite
broad and lead to worry at the start of the project as to which
framework would be used to gather information from. The research
initially focused deciding what framework would be used to make
the front end display. It was clear that a number of objectives
would have to be completed for this project:

e A frontend to display basic information about the system.
e Have information update in real time or close to real time.
e Show activity going on in the environment.

Incorporate image dragging functionality to be able to change the
cloud environment in a more user friendly Way. (Rekimoto, 1997)
There are a number of options to choose from when deciding what
framework to use.

Snap is an open sourced telemetry framework that allows the
collection and processing of data about a telemetry network
through one API. While the framework seems very useful and
exactly what the project is looking for it doesn’t have any features
that would be relevant to people from an administrative
perspective. So the manipulation of 2-D objects would not be
possible using this Framework. Some concerns appeared early
about having the network privileges to run administrate commands
on the Framework from inside the UCC network. If the framework
was to be developed it would be crucial that whichever one that is
going to be used allows for users to have permission to run the

16

services without network admin privileges. This is another reason
why it was decided to move away from technologies such as
SNAP and ganglia.

Dr. Dapeng Dong suggested that it would be best to use the
OpenStack framework as this would provide the ability to
complete all of the project objectives. OpenStack had a large
number of available API’s written in numerous languages with
plenty of documentation. An OpenStack implementation could be
accessed from within the UCC Network and from outside UCC
using a virtual private network. OpenStack does not have a
graphical user interface that can be controlled by manipulating 2-D
images so if the project is successful there could be a potential
market and demand for this kind of application.

| focused on to determine the best framework to use for the visual
display of the project.Vis.js and Neo4j contain many useful
interactive graphs that can present data from databases in very
impressive and simple ways. However, these frameworks did not
provide any features that could aid in the drag and drop
functionality that was the main objective of the project. After
failing to find a relevant JavaScript framework that had drop and
drag functionality built in it, it was determined that creating the
JavaScript from scratch would be achievable. A template was
created using images and the boxes.

17

w

Figure 7 First user interface design

This design presented to the project supervisor who was satisfied
with it and felt it was how they imagined the front end would look
like. This then became the template for the front-end design of the
entire application. From here the server side code can be
implemented behind this front end.

Bootstrap is a framework to help make HTML and CSS websites
easier and better to use. They have many features that can be
incorporated in to the design of the page. The Alert messages were
produced using the bootstrap alert system. It makes it very easy
and quick to develop HTML features by simply copying and
pasting code from the bootstrap website and to apply them to the
webpage. Bootstrap also has functionality built in to allow the
quick development of a responsive website that can be useful for
mobile phone users.

18

4 Implementation

4.1 Server Side Code

This project was developed inside of eclipse IDE, as it has a
number of advantageous features that were used during the
development of this project.

e Integration with Tomcat server to allow quick deployment
of the project for testing.

¢ Real time changes that are automatically saved and changes
applied to the live server project making it easy to check
changes in the code.

e Error handling is comprehensive and is straightforward to
spot mistakes and Eclipse even help you fix them. It is
suitable for anyone who isn’t confident in their coding
skills.

As previously discussed the server side code is developed using
Servlets running Java. The OpenStack4J library provided the code
necessary to run the commands that provides the data of the
OpenStack implementation and the commands that were issued to
the server to manipulate the implementation.

30 //Authentication variables

31 final static String USERNAME = "UserName";

32 final static String PASSWORD = "Password";

33 final static String DOMAIN = "Default”;

34 final static string TENANT_NAME = "Cloudvisualization™;

35 final static String KEYSTONE ENDPOINT = "http://18.1@8.18.1:5880,/v2.8";
36

38 * HttpServliet#HttpServlet()

39

46 public MyServlet() {

41 super();

42 Auto-generated constructor stub

a3 i

45 /

46 * HttpServlet#tdoGet (HttpServlietRequest request, HttpServletResponse response)
48 protected void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
49

=G // Declaring variables that will hold data

51 String flaveorID = "";

52 String imageID = "";

53 String networkID = "";

54 string data = "";

55 //The Openstack4] authentication

56 05Clientv2 os = OSFactory

57 Lbuilderv2()

58 .endpoint (KEYSTONE_ENDPOINT)

59 .credentials(USERNAME, PASSWORD)

60 .tenantName (TENANT_NAME) .authenticate();

Figure 8 Code for how Servlet returned information

19

This section of the main Servlet gathers the information about the
system and returns it in HTML to the JSP page. After importing in
the library’s that are required in the Servlet, then use the doGet()
method that gathers the data and returns it. This servlet is the only
servlet that has a doGet() method. Lines 31 to lines 35 is where the
logging in information is required. This is where a user types in
their username/password and the url for the authentication. Then
inside the doGet() method on line 56 to line 60 is the code taken
from the OpenStack4J website that is used to authenticate with the
OpensStack implementation. The method done in this Servlet for
authentication is how the rest of the Servlets authenticate as well.

After the authentication, the work of collecting the data can begin.
Using the OpenStack4J documentation we can find the code used
to request information from each different part of the
implementation.

64 // Find all Compute Flavers
5 List<? extends Flavor> flavors = os.compute().flavors().list();
data += “";
for (Flavor f : flavors) {
69 try{
7@ Integer g = Integer.parseInt(f.getId()); }
catch(Exception e) {
73 data += ("<lirName: " + f.getName() + " Ne of CPU's: ™ + f.getVcpus() + " RAM: ™ + f.getRam() +"mb</1i>");
74 T
75
if (f.getName().equalsIgnoreCase("ml.tiny")) {
flavorID = f.getlId();
78 3
79
// Some HTML feature to present the data
data += "¢/ul>";

Figure 9 Servlet code to get Flavour information

This is the method used to get all the flavour information from
OpensStack, The information is stored in a list and the relevant
information like the names, number of CPU cores, and RAM sizes
are outputted to a list that will display on the JSP page. Here is an
example of the output that this section of code generates on the
main JSP page.

Flavor and Image information

Name: Small No of CPU's: 1 RAM: 2048mb
Name: Large No of CPU's: 4 RAM: 8000mb

Figure 10 What Figure 9 outputs

20

The next section works in similar way except using the specific
OpenStack4J feature to query that specific service. The Glance
service that gathers up all the information regarding what system
images can be used to create Virtual machines with. This section of
code outputs a dropdown box, with the image ID sored as the list
ID so that when a user selects an image that ID is then passed to
the JavaScript to be used to call a virtual machine.
// List all Images (Glance)
List<? extends Image> images = os.images().list(};
for (Image img : images) {
data += ("<option value = \""+img.getId()+"\">" + img.getName() + "</foption>");
if (img.getName().equalsIgnoreCase("cirres™)) {

imageID = img.getId();
h

L N e I I v - e
LR [e R I N

5 }
Figure 11 How Servlet gathers information on images

An example of the output of the code from this section of code is
shown here:

Select Images

Figure 12 Figure 11 output

After all the information is gathered the Servlet then sends the data

to the index.jsp page like in Figure 13 This sends out the

information every time it is requested from the Servlet, where the

data is then displayed in the <body> tag of the JSP page.

116 request.setAttribute(“data", data);

117 request.getRequestDispatcher(“index.jsp").forward(request, response) j.I

Figure 13 How data is sent to index.jsp page

This report will not refer to each method as many of the methods
used to output information in this Servlet behave in the same way
as above specified method.

4.2 System manipulation

There are four different Servlets in this project and they behave as
follows:

21

e MysServletjava Gathers information using doGet() and
starts virtual machine using its doPost() method

e DeleteServer.java has a doPost() method that deletes virtual
machines

e PauseServer.java shuts down virtual machines using
doPost()

e UnpauseServer.java reboots shut down virtual machines

The doPost() methods have to be called by the JavaScript inside
the index.jsp page to work. The JavaScript outputs the ID’s of
whatever is needed to complete a task using JQuery to the relevant
Servlet and the Servlet then actions the operation.

Take the PauseServer.java Servlet as an example. The code for this
section is relatively short and it has the usual authentication that is
seen in all of the Servlets and just a few lines of code at the end.
This is because to pause a server in the OpenStack4j library all that
is needed is the virtual machines ID.

51 String VMID = request.getParameter("VMID");

52 PrintWriter reply = response.getWriter();

54 if{vMID.length() > @ || WMID == null) {

55 os.compute().servers().action(VMID, Action.SUSPEND);
56 reply.write("Success™);

57 1

Figure 14 doPost() method for suspending a server

The method first collects the “VMID” or the virtual machine ID
that the user requested to be shut down, then after it makes sure it’s
not empty the Virtual machine is paused on line 55. This is very
similar to how all operations on the system are carried out, similar
operations are done on the UnpaseServer.java and the
DeleteServer.java servlets.

4.3 Graphical User Interface/ JavaScript

The main page (index.jsp) finished page looks like the below
figure when there are no virtual machines instances launched in the

22

OpenStack implementation.

S ma | Flavor and Image information

Name: Small No of CPU's: 1 RAM: 2048mb
Name: Large No of CPU's: 4 RAM: 8000mb

Medium Select Images

Running Pause P

Network ID: 48 ab 48 30 bd 09 92 34 05 41 ; name: Public

Current running servers

top of list Is the bottom picture

Figure 15 Front page with no servers running

Once an image has been selected from the dropdown box the user
then selects which flavour machine they want represented as
colours on the left. The user can then drag that machine to the
running box which will then launch a virtual machine using the
image selected and the flavour details.

The below figure is what a machine looks like after a successful
deployment of a server using this application.

Small . .
Flavor and Image information
Name: Small No of CPU's: 1 RAM: 2048mb
Name: Large No of CPU's: 4 RAM: 3000mb
M ed I u m Success! Request has been sent to the server
Runnin Pause |
g Network 1D
Network ID: 48 ab 43 30 bd 09 92 34 05 4f ; name: Public
Current running servers
'VM ID: af6ce395bf087cccf011VM name: CloudVvM 1 Status: Online IP: 172.17.100.105
Large

i

Figure 16 Front page with a successful launch of a VM

23

As can be seen by the figure above the machine has now been
updated and added to the current servers list and a success message
is displayed. To prove that the instance is running the OpenStack
dashboard can be opened up and the Virtual machine details can be
confirmed there.

Instance Key

Image Name IP Address Size Status Task
Name

Ubuntu 14.04

0O CloudvM 1 s 172.17.100.105 project.small - Active nova MNone Running 0 minutes

Displaying 1 item

Figure 17 OpenStack Horizon Dashboard showing the Virtual machines state

Here it can be seen that the instance has been made with the same
name and IP address, as well as having the same flavour and image
selected in this example. When the user wants to pause the virtual
machine instance which will shut off the virtual machine all they
need to do is drag the image from the running box in to the pause
box. This sends the VMID to the PauseServer.java servlet that then
shuts down the virtual machine. After successful completion of this
operation the screen should look like so:

Flavor and Image information

Name: Small No of CPU's: 1 RAM: 2048mb
Name: Laige No of CPU's: 4 RAM: 800Dmb

Success! Request has been sent 1o the server

[

@. Running Pause Network 1D
Current running servers

VM ID: afficed

top of list is the bx ure

w
Figure 18 Output when VM is paused

And once again this change can be seen in the OpenStack horizon
dashboard:

24

Availability Power Time since
Pair Zone State created

ccf011VM name: Cloudvi 1 Status: Paused IP: 172.17.100.105

Actions

Create Snapshot

Instance Image Name IP Address Size Ke_y Status Availability Task Power Time since Actions
Name Pair Ione State created
O CloudVM 1 E%Jmu s 172.17.100.105 project.small - Suspended nova Mone Shut Down 5 minutes Create Snapshot | =

Displaying 1 item

Figure 19 Horizon dashboard to show paused server

The server can then be shut off by dragging the image in to the bin
image and that will run the Delete server servlet.

The JavaScript that is used to control the events of when images
are dropped is done in to the “target” are which is the running box
in the application.

226 function drop(ev)

227 {

228 ev.preventDefault();

229 var data=ev.dataTransfer.getData("Text")

238 var flavorID = document.getElementById(data).getAttribute(value');
231 var VMID = document.getElementById(data).getAttribute(' class");
232

233 if (event.target.className == "target") {

234 event.target.style.border = "";

235

236 if (window.imageID == null &8 data.indexOf("drag") »= @){
237 §("#alertmessage”).show();

238 return;

239 }

241 if (WMID != null){]

243 var clone = document.getElementById(data).cloneNode(true);
244 if(data == "dragl"){

245 clone.id = Math.floor((Math.random() * 18) + 1);
246

247 else if(data == "drag2"){

248 clone.id = Math.floor((Math.random() * 28) + 11);
249 1

258 else{

251 clone.id = Math.floor((Math.random() * 38) + 21);
252 1

253 ev.target.appendChild(clone)

254 unpauseserver (VMID)

255

256

257 else if (VMID == null){

258 var clone = document.getElementById(data).cloneNode(true);
259 if(data == "dragl"){

268 clone.id = Math.floor((Math.random() * 1@) + 1);
261

2682 else if(data == "drag2"){

263 clone.id = Math.floor((Math.random() * 2@) + 11);
264 1

265 else{

266 clone.id = Math.floor((Math.random() * 38) + 21);
267 1

268 ev.target.appendChild({clone)

269 createserver(window.imageID, flavorID)

278 }

Figure 20 Code for the drop functionality in JavaScript

At the start of this drop function, there is an attempt to collect data
from the image that has been dropped, such as if it has a virtual
machine ID or if it has a flavour ID located in the value class of the

25

dropdown box list of images. On line 233 it asks if the location of
the image is dropped is on the running box. Inside of that if
statement there is a quick check to make sure an image has been
selected before the user attempts to start a virtual machine. The
error message looks like this:

Flavor and Image information

Name: Small No of CPU's: 1 RAM: 2048mb
Name: Large No of CPU's: 4 RAM: 5000mb

lect an image first

Warning! Please se

T ——

Network 1D
Network ID: 48 ab 48 30 bd 09 92 34 05 4f; name: Public
Current running servers

top or list Is the bottom picture

W
Figure 21 Warning message example from the application

On line 241 and line 257 we check to make sure if the image is
already associated with a virtual machine i.e. if it has a VMID a
new image is created with ids based on its size and
unpauseserver(VMID) method is run. If the image is not associated
with a VMID then the application assumes the user is trying to
create a new instance. It creates a new image in the box and starts
the method createServer(window.imagelD, flavourID) which sends
the data of the flavour and image selected to the method. The
methods createServer() and unpauseserver() all behave the same
way with only slight changes to the URL the message is sending to

26

and the data it IS sending.

33 function createServer(imageID, flaveorID){

P

jQuery.ajax({

url:"http://localhost: 8888/ test2 /MyServiet”,
data:{"flavor™:flavorID,"image":imageID},
type: "POST',
dataType @ '=ml’, /fuse 'jsonp' for cross dom
success:function(data, textStatus, jgXHR){
// access response data
%("#selectCodeNotificationArea™) . show();

O Ca o~ oo

Bob B s L
| J =

|
in

Fa
error:function(data, textStatus, jgqXHR){

%("#selectCodelotificationAreaz]’). show();
}

Fhi

Bt

1
W = oh

I
[o= I

|l el =l B o S S T T S Sl S S]
I |
P

wnown

}
Figure 22 JQuery code for outputting POST to Servlet

The code above is an example of how data was sent to the server
using JQuery. The URL to the server is specified and the data is
collected an inserted in to the POST and it is then shipped to the
servlet. If it encounters an error it returns an error message and if it
returns successfully then it displays a success message. The rest of
the methods work the same way except for small changes to the
URL and the data.

This is an overview on how the JavaScript behaves by reacting to
drop events and running methods to send the relevant information
to the Servlets After every drag and drop action is completed the
page needs to reload to get the newest system information , so a
method has to be implemented to draw the images in the box when
the page loads.. A section in JavaScript was made so that when a
server was already running, the JavaScript will generate the correct
flavour image with its virtual machine ID inside of it, in the box
that corresponds to the state of the machine i.e. if it’s running it
will be in the running box. This is carried out by this section of
code in the index.jsp page

27

83 var listlength = $("#mylist 1i").length;

84 var tmp = listlength -1;

85 var lis = document.getElementById("mylist").getElementsByTagName("11i");
86 while(tmp »= @){

87 if (lis[tmp].id == ("5T352168-98d3-4457-93a6-1c33a993Fadc")){

33 var clone = document.getElementById(“dragl”).cloneNode(true);

98 clone.className = lis[tmp].className;
1 if (lis[tmp].textContent.indexOf("PAUSED") »= @ || lis[tmp].textContent.indexOf("SUSPENDED") >= @){
2 $("#div2").append(clone);
clone.id = Math.floor((Math.random() * S@a) + 1@1);
¥
else{
$("#divl").append(clone);
clone.id = Math.floor((Math.random() * 1@) + 1);

93 }
a8 tmp -= 1;

Figure 23 Code from JavaScript on how images are drawn in to boxex

The image goes through the list of data about the current running
servers, it then checks to see what flavour it is on line 87. If it is
that flavour which in this case is the small flavour it will clone the
small server image. Then it needs to find out if the server is
paused or running so it searches the node to see if it has the word
“PAUSED” or “SUSPENDED” in it. If the server is in the paused
state then the image will be drawn to the “paused” box (#div2) and
if it is in the running state then the server is put in the “running”
box. The while loop variable is then reduced and it moves on to the
next item in the list. The JavaScript checks against all three image
flavours that have similar methods like the one shown above.

4.4 Problems

Coding in Eclipse IDE framework made the project much easier to
code. The platform handles all the hosting part of this project, all
that is needed is a link to a tomcat server and eclipse will host it for
you. There were a few issues in implementing this project the first
was the network in UCC. The OpenStack implementation was on
another separate network in UCC which made it difficult to gain
access to the network. Because of this there is no way to access the
UCC OpenStack from outside the UCC network. To fix this
problem more RAM was purchased for my computer at home so
that it can have the minimum specifications to run OpenStack. This
allowed for more time to get experience on how a Cloud
environment worked. Another problem faced during the
implementation had to do with Eclipse, although the IDE made it
simple once the process of setting up this project to work on
another machine is quite difficult and made version control very
difficult in this project. Normally Git would be used in software

28

projects like this, but it ended up being impractical in this project
due to external jars/tomcat and file permission issues. Instead I
used Bazzar in this project it worked much better than Git did.

5 Evaluations

As this project was a software development project, the two ways
that can be used to test the project are:

1. Code testing
2. Surveys

It was decided that in order to determine that the code outputs
correctly was to check ID the html file that the programme is
outputting is valid. It is also crucial to get feedback from users
about the usability of the software, and if possible to collect data
from wusers with past experience using Cloud management
software.

5.1 HTML validating

The first area in the code testing was to make sure that the JSP file
was outputting the correct HTML. The validation of the HTML
code was carried out by running the test on
https://validator.w3.org/. Although no errors can be seen from the
browser that doesn’t always mean that the HTML code is correct.
After running the HTML validator on the project there were over
41 errors in total just on the main page alone. Most of these errors
were simple errors including not writing “type="" after some tags
on the page.

Other errors showed big inconsistencies in the writing of the
HTML that revealed flaws in the image dragging. This error was
creating difficulties for the server images to be dragged in to the
boxes and the bin. Fixing these errors in the HTML resulted in the
most successful test that could have been done to help usability on
the webpage.

Once the page was successfully validating on the main page, the
next step was to make sure that all other pages are producing valid
html pages. The HTML page test validation was run several times

29

https://validator.w3.org/

after turning on/off servers and changing image selections. They all
produced valid HTML pages as shown below.

Nu Html Checker

This tool is an ongoing experiment in better HTML checking, and its behavior remains subject to change
Showing results for contents of text-input area

Checker Input

Show | ¥ source: outine image report | | Options.

<@ pag: contentType="text/html; charset=IS0-8859-1"
pageEncoding-"150-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//BTD HTAL 4.81 Transitional//EN" "http://wwi.u3.org/TR/html4/loose .dtd">
<html>
<head>
<link hy css" rel="stylesheet” type="text/css" />
<meta h “text/html; charset-IS0-8859-1">
<style typ
#dive p{

Use the Message Filtering button below to hide/show particular messages, and to see total counts of errors and warnings

Message Filtering

Document checking completed. No errors or wamings to show.

Source

<@ page language="java" contentType-"text/html; charset-ISO-8850-1"
DpageEncoding-"150-8859-1"%>
<!DOCTVPE html PUBLIC "-//W3C//DID HTML 4.1 Transitional//EN" “http://us.u3.org/TR/htnld/loose.ded">

trap.min.css” rel-"stylesheet” type="text/css" />
tent="text/html; charset=I50-8859-1">

Figure 24 HTML 5 validator output

5.2 CSS Validator

The CSS validator like the HTML validator was crucial to ensure
the CSS code was correct and behaving as expected.To do this the
W3C school CSS validation service was use at
https://jigsaw.w3.org/css-validator/. There are many reason why
someone would want to make sure the CSS is valid:

e Validation as a debugging tool: Not all programs handle
errors gracefully and many will handle errors in the CSS in
different ways. Making sure the CSS is valid will ensure it
runs the same on all browsers.

e Validation for future proofing: Just because a application
runs correctly on a number of browsers today does not
mean that it will work in the future. By checking that the
CSS complies with the web standards will security that the
code should work in the future.

e Easier maintenance: By making sure that the HTML/CSS
is valid and complies with the web standard makes the code

30

https://jigsaw.w3.org/css-validator/

much easier to maintain even if developed or changed by
another person.

e Valid CSS/HTML can lead to a better score: Google
search algorithm checks all pages to make sure that the
pages have valid pages. If the pages have errors they will be
ranked lower in Googles search queries. If the project was
to be released it would be crucial to the success if it was
given a high search ranking.

Due to all these reasons the validation of the CSS was crucial to
ensure the successful running of the project. When the validator
was run on the project only one error came back and it was fixed
immediately and now the project is validated in CSS. These test
are very important so that the user design of the project doesn’t
have the same problems that some of the other Cloud computing
frameworks. (Goyal, 2010)

& C | & Secure | hitps:/jigsaw.w3.org/css-validator/validator & O

Service
)

Jumpto: Validated CSS

W3C CSS Validator results for TextArea (CSS level 3)

Congratulations! No Error Found.

This document validates as CSS level 31

To show your readers that you've taken the care to create an interoperable Web page, you may display this icon on any page that validates. Here is the XHTML you could use to add this icon to your Web page:

>
<

)

Figure 25 CSS Validation output

31

img, #divz img {

#divi {
bockground-color @ rgba(281, 243, 188, 8.5);

#diva {
background-color : rgba(243, 233, 1B8, 8.5);

#divi, ®divz {

Figure 26 Code from CSS validation output

The application has been tested on and works very well on chrome
and Internet explorer. Further development is needed to get the
application working in more browsers such as Firefox and Safari.
The only problems that occur on the application are generally
networking issues, but the OpenStack4J error handling makes it
very easy to fix the problem. If this was to be developed on access
to a network with admin privileges there wouldn’t be any
networking problems at all.

5.3 Survey

As this project depends so much on usability the most efficient test
that could be done for this project was to take a survey of a group
of users after they tried out the project. A survey was made using

32

Google Forms, where a task was giving to the user taking the
survey to create an Ubuntu virtual machine using the programme,
then to shut down the sever and to restart it again.

Almost all users were able to complete the task without any
assistance at all which indicated high degree of usability that the
users were familiar with. The Survey then asked the user if they
had any previous experience using cloud management software
before, if they had then follow up questions are asked comparing
the difference between using whatever cloud management software
that the user has used before and using the system supplied in this
project. The questions were to determine if the user found using the
project system was easier or harder than using it the original way.
The survey also asked if the user had any feedback on the project.
On the day of the Computer Science 4" year project open day users
could choose to fill out the survey on the computer next to the one
that hosted the project or the user could scan a QR code linking to
the survey to complete on their phone.

Please fill out survey

https://goo.gl/forms/gbyae92ig02lligv1

Figure 27 QR code to survey shown on open day

In total fourteen users completed the survey with varying degrees
of experience with previous cloud computing software.

The first question asked the user to grade how hard the task was
that they had to complete where 1 was very easy and 5 was very
difficult. The results were as follows:

33

Please rate how difficult it was to complete the tasks (14 responses)

o@ien)

1(7.9%)

0{0%) 0 [Ul%}

Figure 28 Difficulty to complete task

The results show that most users were able to accomplish the task
very easily and the rest (35.7%) were still able to accomplish the
task easily or in a normal amount of time. No users found the
programme difficult or very difficult to use.

The next question asked users to rate how useful was the
information that was provided to them, 1 being very useful and 5
representing not useful.

How useful was the information provided? (14 responses)

oYt

Figure 29 graph for information usefulness

As can be seen by the results above the same percentage of people
found the information provided to be very useful. However this
time users were more dissatisfied with the information shown to
them with one user rating the information as not helpful. This is a
clear indication that improvements will be required to improve the
information given to the user, by making the messages clearer and
to display information in an intuitive way such an interactive
graphs.

34

Have you ever used cloud computing software before? (14 responses)

® ves
@ No

Figure 30 Pie chart for previous experience

We can see from this pie graph that the majority of people who
took the survey have previous experience with cloud computing
software. These people were judged to provide better feedback
than users who have never used cloud computing software before,
and follow up questions were only asked to this group of people.

If yes, did you find this project easier or harder to operate? (= responses)

@ Easier
@ Harder

Figure 31 Pie chart comparison of ease

From the results above an overwhelming majority of users that did
use previous cloud computing software found the application in
this project to be easier than what they are used to. This was the
main objective of the project and this indicated that the design used
in this project for drag and drop functionality really does provide
users an easier and more user friendly ptogramme to accomplish

35

tasks on the system.

If yes, rate how fast it took you to do the tasks compared to other software
used.

esponses)

4 (50%)

Figure 32 Graph of speed of application

From the graph displayed above it can be seen that over 85% of
users found that the application was not only easier to use but also
quicker in its operations. This is a great benefit to end users as
saving time doing each operation is generally seen as good user
interface design.

Some feedback was left on the survey but the feedback received in
person was more detailed than the responses on the survey.

Overall from this survey it can be seen that the project was a
success with the majority of people finding the new application
faster and easier than conventionally used cloud management
software. Any follow up surveys would include questions asking
users what cloud computing software they have used and to
compare this application with other applications that users have
tried.

6 Conclusions

6.1 What has been accomplished?

The objective of this project was to make a graphical user interface
that can be used to manipulate a cloud computing network by
dragging 2-D images. While this objective has been reached further

36

improvement work will be undertaken to the functionality of the
application. The server side code has been developed and now the
next step for this application is to add additional features. So far
the system displays basic information about the system such as
what images are installed, CPU/RAM sizes, IP addresses, and
virtual machine names. Feedback suggests that this information
isn’t enough and it could be done better. This information will be
crucial to any future success of this software.

The implementation of this project as a web based application
proved to be a success making the application much easier to
access and use. Once the application was set up on the network its
ease of use was found to be very helpful to users.

During this project | set out to learn about how cloud networks
operate and how they function on a deeper level. Being able to
manipulate virtual machines on a network was a great learning
experience and | have gained a tremendous amount of knowledge
from this project. Having set up a cloud implementation of
OpenStack on my own computer provided a learning experience
that normally wouldn’t be experienced otherwise.

6.2 What can be done next?

From the feedback on the survey and from some of the feedback
received from others at the project open day, it is clear that the
main fall back of the application is the need for more at a glance
feedback from system specific information. Information such as
the total amount of CPU cores available vs amount of CPU cores
used. One very helpful advice received on the day was to used
Google Charts, a JavaScript tool to make interactive graphs from
system information. An example is to make a pie chart to display
the hard drive space of the system so that users can at a glance
know how much system storage there is left.

After the project was finished all of the core functions for the
OpenStack library have been used in the application. The “Glance”
API was used for the image manipulation and “Nova” for its
computing features such as turning off and on virtual machines.

37

The OpenStack library has much more optional functionality than
this. Currently the application only publishes virtual machines to
one public network; using the “Neutron” features for network we
could add more options for the user to create networks and subnets
of their own. Using the servlet template we can add functionality
for this as long as a tool can be found for displaying this
information to the user. This way more features can be added on to
the existing framework modularly. It would allow for faster and
easier developments especially with the adaptation of interactive
graphs. Adding more features would add more incentive to use the
software as not only will it be easier to use and faster but it will be
as comprehensive as other cloud management systems.

Due to the nature of the user design interface and the drag and drop
manoeuvres of the images; it would be very interesting to develop
this project as a mobile phone app. Allowing users to easily
control their cloud networks from their phones would be an
interesting feature. There are different ways this could be achieved.
An android app could be developed to interface with the data from
the network. This way a user would be more immersed in an
application and have access to more usability functionality. The
project could also be devolved so that the webpage can responsive.
And have mobile phone specific functionality. This would be a
very interesting experiment to see if the same functionality display
from a desktop screen can fit in to a mobile phone screen. (Andreas
Konstantinidis, 2012)

A suggestion from Dr. Dapeng Dong was that additional
functionality could be designed allowing a user to right click a
specific virtual machine and the programme to provide an option to
ssh to that machine should appear. This would be an interesting but
difficult development to do as JavaScript will not allow users to
open ssh connections from the browser. It may still be possible to
do in the future by implementing it with FireSSH, a JavaScript
based plugin for browsers. This would make it very easy for users
to quickly go in and make individual changes to each machine by
quickly connecting to it via ssh

Overall the project main goals were accomplished users can now
do basic cloud computing manipulation easier and faster using the
application. The application shows basic cloud system data that are

38

updated in near real time. The knowledge gained from this project
is very valuable and the experience was very fun and exciting.

Appendix
Works Cited

Andreas Konstantinidis, C. C.-Y. (2012). Demo: a programming cloud of
smartphones. MobiSys '12 Proceedings of the 10th international
conference on Mobile systems, applications, and services, 465-
466.

Goyal, P. (2010). Enterprise Usability of Cloud Computing
Environments: Issues and Challenges. 2010 19th IEEE
International Workshops on Enabling Technologies:

Infrastructures for Collaborative Enterprises.

Juhani Toivonen, S. H. (n.d.). EASI-CLOUDS - Extended Architecture
and Service Infrastructure for Cloud-Aware Software. D5.10 —

Final Report on Cloud Computing, 90.

Omar SEFRAQUI, M. A. (October 2012). OpenStack: Toward an Open-
Source Solution for. International Journal of Computer
Applications (0975 - 8887).

Rekimoto, J. (1997). Pick-and-drop: a direct manipulation technique for
multiple computer environments. UIST '97 Proceedings of the
10th annual ACM symposium on User interface software and

technology, 31-39.

39

