

Conor Molloy

UCC Computer Science

A Cloud Visualization

Framework
112467548 - 20th April 2017 - John Herbert

2

Abstract

Cloud Computing Frameworks such as Open Stack have a

graphical user display, which shows textual information that

requires all users to know precisely all the details involved on how

to run a virtual machine. This style of management is tedious and

difficult to train new users. This can be avoided by constructing a

2D model of the cloud computing management to provide a better

experience for the user. In the model, each entity such as the

virtual machines, physical servers and the networks are modelled

as a 2D entity that can be manipulated by the user. In doing this a

user managing a cloud computing infrastructure no longer requires

commands or a web based interfaces. Instead it can be done by the

manipulation of 2D entities. In particular, an interactive 2D

modelling of a cloud infrastructure can be very useful for

monitoring, managing, designing, and planning for an existing

and/or new cloud and data centre infrastructure.

3

Declaration of Originality

In signing this declaration, you are conforming, in writing, that the

submitted work is entirely your own original work, except where

clearly attributed otherwise, and that it has not been submitted

partly or wholly for any other educational award.

I hereby declare that:

 this is all my own work, unless clearly indicated otherwise,

with full and proper accreditation;

 with respect to my own work: none of it has been submitted

at any educational institution contributing in any way to an

educational award;

 with respect to another's work: all text, diagrams, code, or

ideas, whether verbatim, paraphrased or otherwise modified

or adapted, have been duly attributed to the source in a

scholarly manner, whether from books, papers, lecture

notes or any other student's work, whether published or

unpublished, electronically or in print.

Signed: .

Date: .

4

Acknowledgements

Thank you to Dr. John Herbert for all your help and advice you

gave me throughout the project.

Thank you to Dr. Dapeng Dong for all your help with all the

technical specific questions you answered and advice you gave to

me throughout the project.

Thanks to my family and friends for the countless times you all

helped me with this project.

5

Table of Contents

Contents

Abstract ... 2

Declaration of Originality ... 3

Acknowledgements ... 4

Table of Contents .. 5

1 Introduction .. 9

1.1 Introduction ... 9

1.2 importance of my approach .. 9

1.3 Objectives of the project ... 10

2 Design .. 10

2.1 What is Cloud Computing? ... 10

2.2 What are the different types? .. 11

2.3 Why OpenStack? .. 12

2.4 Web apps and Servlets .. 15

3 Analyses ... 16

3.1 initial impressions ... 16

4 Implementation .. 19

4.1 Server Side Code .. 19

4.2 System manipulation ... 21

6

4.3 Graphical User Interface/ JavaScript .. 22

4.4 Problems ... 28

5 Evaluations ... 29

5.1 HTML validating .. 29

5.2 CSS Validator ... 30

5.3 Survey ... 32

6 Conclusions .. 36

6.1 What has been accomplished? .. 36

6.2 What can be done next? .. 37

Appendix ... 39

7

Table of Figures

Table of figures Figure 1 The different cloud computing services 11

Figure 2 OpenStack diagram .. 13

Figure 3 Example of commands to run OpenStack 13

Figure 4Layout on how OpenStack API's work 14

Figure 5 Core OpenStack services .. 14

Figure 6 Optional OpenStack services .. 15

Figure 7 First user interface design ... 18

Figure 8 Code for how Servlet returned information 19

Figure 9 Servlet code to get Flavour information 20

Figure 10 What Figure 9 outputs .. 20

Figure 11 How Servlet gathers information on images 21

Figure 12 Figure 11 output ... 21

Figure 13 How data is sent to index.jsp page ... 21

Figure 14 doPost() method for suspending a server 22

Figure 15 Front page with no servers running .. 23

Figure 16 Front page with a successful launch of a VM 23

Figure 17 OpenStack Horizon Dashboard showing the Virtual machines

state ... 24

Figure 18 Output when VM is paused .. 24

Figure 19 Horizon dashboard to show paused server 25

8

Figure 20 Code for the drop functionality in JavaScript 25

Figure 21 Warning message example from the application 26

Figure 22 JQuery code for outputting POST to Servlet 27

Figure 23 Code from JavaScript on how images are drawn in to boxex 28

Figure 24 HTML 5 validator output ... 30

Figure 25 CSS Validation output .. 31

Figure 26 Code from CSS validation output ... 32

Figure 27 QR code to survey shown on open day 33

Figure 28 Difficulty to complete task ... 34

Figure 29 graph for information usefulness .. 34

Figure 30 Pie chart for previous experience ... 35

Figure 31 Pie chart comparison of ease .. 35

Figure 32 Graph of speed of application ... 36

9

1 Introduction

1.1 Introduction

Since 1979 when Steve Jobs and others at Apple began working on their

latest Graphical User Interface (GUI) concepts for the new

Macintosh computer, there has been a great demand for systems

run by buttons rather than command lines, cloud computing is no

exception. In the world of cloud computing, bringing online and

offline servers quickly is considered a job for the most advanced

technicians due to its incredibly complicated command line

required. Existing cloud computing technologies provide graphical

user interfaces to interact with users. Many of these systems such

as the current OpenStack dashboard and VMware’s VSphere use

textual data and graphical images. This style of management is

rather tedious and requires costly training to be able to operate. In-

depth knowledge is required about the particular network, flavour,

image and hardware configurations to be able to carry out simple

commands such as starting a server or shutting one down.

The aim of this project is to allow users with minimal experience in cloud

computing to be able to quickly and effectively launch servers to access

resources that are needed. The environment I will be working in is an

installation of OpenStack which was installed on the servers inside of

University College Cork (UCC). The OpenStack package allows the

installation of a base operating system on many different servers/PC’s

and permits a user to control them in a basic way via the online

dashboard. OpenStack makes it possible to be able to run API calls

through a programming language to control the OpenStack environment.

The next step is how to run these API calls when certain actions that are

familiar to the user are done.

1.2 importance of my approach

It can be very difficult for a new user to operate these simple commands

that can be vital to the success of a project so it is necessary to be able to

give users new and more intuitive ways so that they can operate as an

administrator on the cloud network. Instead of displaying textual data and

requesting the user to input every variable, the approach I developed is

to automatically display information depending on the configuration of

the cloud operation system, and to allow users to manipulate 2-D images

to do basic commands such as starting, pausing and deleting servers. As

10

OpenStack does not have a graphical user interface like this, I saw an

opportunity to develop something that hasn’t been done, that could

benefit the average user of OpenStack. (Omar SEFRAOUI, October

2012)

1.3 Objectives of the project

My objectives are to learn how OpenStack works and to gain insight into

how a cloud computing architecture is structured. After learning how a

cloud implementation of OpenStack works the next objective is to learn

how to gather the information needed to run a graphical user interface. I

will then work out how to send information to a cloud service that would

allow it to be manipulated in a programming language. The next step is

to figure out the best way to allow a user to run this programme with the

convenience of the user in mind. During this step, a graphical user

interface will need to be designed to allow basic commands to be sent to

the Cloud infrastructure by manipulating 2D objects in a familiar way.

Finally, my last objective is to develop the interface so it can be able to

display important information to the user in an intuitive and easily

understandable way.

2 Design

2.1 What is Cloud Computing?

Cloud computing is a general term for hosted services available

through the internet. Cloud computing is essentially a metaphor for

the internet. Cloud computing allows people to use computing

resources such as virtual machines, storage or applications as a

utility rather than having to set up the hardware and maintain it

themselves. A company can use a public cloud service such as

Amazon Web services to supply their cloud computing needs, or if

they specific requirements preventing them from going to a public

service they can set up their own private cloud computing service.

There are several benefits to cloud computing.

 Self-service: All end users of cloud computing software can

start any computing resources to achieve whatever goal

they want to achieve on demand. This eliminates the need

for an IT administrator to build and maintain each

individual request.

11

 Elasticity: Companies can scale up or scale down very

easily based on the demands put on the infrastructure. This

saves the need to have a local server running all the time

taking up resources even if it is not needed.

 Some online providers of cloud services like Amazon web

services offer customers a pay for use model that allows

customers the ability to only pay for the computing

resources used.

In the public cloud computing model customers only pay for the

resources they consume such as CPU computing power, the

amount of storage and the bandwidth of the connection. These are

paid on demand either charged by the minute or by the hour. This

comes at the cost of the customer having no control over the cloud

infrastructure.

With private cloud computing architecture the customer can use

their own architecture, or use the hardware from a data centre to set

up their cloud computing infrastructure. This gives the customer

more access to the management, control and security over the

cloud. Companies can also choose to use a hybrid system where

sensitive data or important workloads can be operated on in the

private cloud but operations that can vary in number that needs to

be scaled on demand can be operated by the public cloud

infrastructure. [1][2]

2.2 What are the different types?

Figure 1 The different cloud computing services

12

There are generally three types of cloud computing services:

 SaaS (Software as a service)

 IaaS (Infrastructure as a service)

 PaaS (Platform as a service)

SaaS or software as a service is when a provider “rents” particular

software to customers that have expensive license fees but for a

subscription based payment, or a pay on the go system. This

service can be very attractive to customers who want to have

access to enterprise software but only pay for what they actually

use without having to worry about maintaining, updating or

patching the software. Examples of SaaS are Salesforce CRM,

email (Gmail), Office 365, customer service and expense manager.

PaaS or platform as a service is similar to SaaS but is marketed at

developers. It provides a platform that allows developers to create

web applications easily and quickly without having to maintain the

infrastructure underneath it. Specifically, if a cloud service

provides an operating system, programming language execution

environment, database or a web server. Users access these services

via API’s, web portals or gateway software. Examples of PaaS

include Google app engine, AWS and Elastic beanstalk.

IaaS or Infrastructure as a Service supply virtual server instances

and storage as well as API’s to allow users to transfer workloads to

the virtual machines. Users have a set amount of storage and can

stop, start, pause and resume the virtual machines as desired. IaaS

providers normally supply set amounts of computing resources

(RAM and CPU cores) and storage that can be started and stopped

and that are labelled small medium and large for any image a user

might want to launch his or her application. Examples of IaaS

include OpenStack and Amazon wen services.

2.3 Why OpenStack?

OpenStack is a free open sourced software platform for cloud

computing, that is mainly used as an IaaS. It provides many

different features that can control hardware pools, can be made by

any manufacturer and can be diverse in nature. This allows the user

to take any computing hardware such as older model computers or

13

new servers and use them for storage processing and networking in

a data centre. This diversity of it hardware pool is one of

OpenStack’s unique selling points in the market for cloud

computing. (Juhani Toivonen)

Figure 2 OpenStack diagram

Users can manage the OpenStack Infrastructure either through

command line tools, through the optional web dashboard or

through RESTful API’s.

Figure 3 Example of commands to run OpenStack

Currently more than 500 companies have joined the OpenStack

project. OpenStack is very flexible with hardware and can be

configure to be any size while still being scalable. It achieves this

14

by using API’s for each service it provides, these services

communicate with each other to make it like a modular service.

Figure 4Layout on how OpenStack API's work

Each one of these services has a different API name that it refers to

itself by, for example the compute service is called “Nova”, the

network API is called “Neutron” and the imaging catalogue is

called “Glance”.

Figure 5 Core OpenStack services

 These are all examples of some of the core services that

OpenStack provides but OpenStack also has a range of optional

services including as telemetry, MapReduce, DNS and Database.

15

Figure 6 Optional OpenStack services

2.4 Web apps and Servlets

Java Servlet is principally a Java program that can be run on a

server. This allows a user the ability to run dynamic web projects

written in Java. This is advantageous as the most comprehensive

and powerful API’ library for OpenStack is written in Java and it is

called OpenStack4J. OpenStack4j is an open sourced OpenStack

client that has all the major API abstractions; it is straight forward

and easy to learn with very detailed error reporting. The main

advantages of OpenStack4J are:

 Expected results: the data coming back from the server is

always what is to be expected.

 Concrete API: all the interfaces for the different parts are

well-defined which means a user does not have to refer to

the implementations.

 Tested: The library has been used in several projects and

has been tested fully to ensure it is working properly.

 Exception Handling: The errors provided by the API

library shows in great detail the exact cause of the error in

the code. It does not just return an error 404 when an item

isn’t found.

The use of the Servlet in this project allows the use of a JavaScript

front end design that is powerful enough to allow the manipulation

16

of images and then to output a request to a servlet running

OpenStack4J library and receive data in response. No JavaScript

front end library was used in this project, but JQuery was used to

send http: POST request to the servlet in order to get it to run the

commands. (Juhani Toivonen)

3 Analyses

3.1 initial impressions

The project specified “The main part of the project involves

developing a visualization frontend to display the structure layout

of a cloud infrastructure and show (in near real-time) the various

levels of activity occurring in a cloud environment.” This is quite

broad and lead to worry at the start of the project as to which

framework would be used to gather information from. The research

initially focused deciding what framework would be used to make

the front end display. It was clear that a number of objectives

would have to be completed for this project:

 A front end to display basic information about the system.

 Have information update in real time or close to real time.

 Show activity going on in the environment.

Incorporate image dragging functionality to be able to change the

cloud environment in a more user friendly Way. (Rekimoto, 1997)

There are a number of options to choose from when deciding what

framework to use.

Snap is an open sourced telemetry framework that allows the

collection and processing of data about a telemetry network

through one API. While the framework seems very useful and

exactly what the project is looking for it doesn’t have any features

that would be relevant to people from an administrative

perspective. So the manipulation of 2-D objects would not be

possible using this Framework. Some concerns appeared early

about having the network privileges to run administrate commands

on the Framework from inside the UCC network. If the framework

was to be developed it would be crucial that whichever one that is

going to be used allows for users to have permission to run the

17

services without network admin privileges. This is another reason

why it was decided to move away from technologies such as

SNAP and ganglia.

Dr. Dapeng Dong suggested that it would be best to use the

OpenStack framework as this would provide the ability to

complete all of the project objectives. OpenStack had a large

number of available API’s written in numerous languages with

plenty of documentation. An OpenStack implementation could be

accessed from within the UCC Network and from outside UCC

using a virtual private network. OpenStack does not have a

graphical user interface that can be controlled by manipulating 2-D

images so if the project is successful there could be a potential

market and demand for this kind of application.

I focused on to determine the best framework to use for the visual

display of the project.Vis.js and Neo4j contain many useful

interactive graphs that can present data from databases in very

impressive and simple ways. However, these frameworks did not

provide any features that could aid in the drag and drop

functionality that was the main objective of the project. After

failing to find a relevant JavaScript framework that had drop and

drag functionality built in it, it was determined that creating the

JavaScript from scratch would be achievable. A template was

created using images and the boxes.

18

Figure 7 First user interface design

This design presented to the project supervisor who was satisfied

with it and felt it was how they imagined the front end would look

like. This then became the template for the front-end design of the

entire application. From here the server side code can be

implemented behind this front end.

Bootstrap is a framework to help make HTML and CSS websites

easier and better to use. They have many features that can be

incorporated in to the design of the page. The Alert messages were

produced using the bootstrap alert system. It makes it very easy

and quick to develop HTML features by simply copying and

pasting code from the bootstrap website and to apply them to the

webpage. Bootstrap also has functionality built in to allow the

quick development of a responsive website that can be useful for

mobile phone users.

19

4 Implementation

4.1 Server Side Code

This project was developed inside of eclipse IDE, as it has a

number of advantageous features that were used during the

development of this project.

 Integration with Tomcat server to allow quick deployment

of the project for testing.

 Real time changes that are automatically saved and changes

applied to the live server project making it easy to check

changes in the code.

 Error handling is comprehensive and is straightforward to

spot mistakes and Eclipse even help you fix them. It is

suitable for anyone who isn’t confident in their coding

skills.

As previously discussed the server side code is developed using

Servlets running Java. The OpenStack4J library provided the code

necessary to run the commands that provides the data of the

OpenStack implementation and the commands that were issued to

the server to manipulate the implementation.

Figure 8 Code for how Servlet returned information

20

This section of the main Servlet gathers the information about the

system and returns it in HTML to the JSP page. After importing in

the library’s that are required in the Servlet, then use the doGet()

method that gathers the data and returns it. This servlet is the only

servlet that has a doGet() method. Lines 31 to lines 35 is where the

logging in information is required. This is where a user types in

their username/password and the url for the authentication. Then

inside the doGet() method on line 56 to line 60 is the code taken

from the OpenStack4J website that is used to authenticate with the

OpenStack implementation. The method done in this Servlet for

authentication is how the rest of the Servlets authenticate as well.

After the authentication, the work of collecting the data can begin.

Using the OpenStack4J documentation we can find the code used

to request information from each different part of the

implementation.

Figure 9 Servlet code to get Flavour information

This is the method used to get all the flavour information from

OpenStack, The information is stored in a list and the relevant

information like the names, number of CPU cores, and RAM sizes

are outputted to a list that will display on the JSP page. Here is an

example of the output that this section of code generates on the

main JSP page.

Figure 10 What Figure 9 outputs

21

The next section works in similar way except using the specific

OpenStack4J feature to query that specific service. The Glance

service that gathers up all the information regarding what system

images can be used to create Virtual machines with. This section of

code outputs a dropdown box, with the image ID sored as the list

ID so that when a user selects an image that ID is then passed to

the JavaScript to be used to call a virtual machine.

Figure 11 How Servlet gathers information on images

An example of the output of the code from this section of code is

shown here:

Figure 12 Figure 11 output

After all the information is gathered the Servlet then sends the data

to the index.jsp page like in Figure 13 This sends out the

information every time it is requested from the Servlet, where the

data is then displayed in the <body> tag of the JSP page.

Figure 13 How data is sent to index.jsp page

This report will not refer to each method as many of the methods

used to output information in this Servlet behave in the same way

as above specified method.

4.2 System manipulation

There are four different Servlets in this project and they behave as

follows:

22

 MyServlet.java Gathers information using doGet() and

starts virtual machine using its doPost() method

 DeleteServer.java has a doPost() method that deletes virtual

machines

 PauseServer.java shuts down virtual machines using

doPost()

 UnpauseServer.java reboots shut down virtual machines

The doPost() methods have to be called by the JavaScript inside

the index.jsp page to work. The JavaScript outputs the ID’s of

whatever is needed to complete a task using JQuery to the relevant

Servlet and the Servlet then actions the operation.

Take the PauseServer.java Servlet as an example. The code for this

section is relatively short and it has the usual authentication that is

seen in all of the Servlets and just a few lines of code at the end.

This is because to pause a server in the OpenStack4j library all that

is needed is the virtual machines ID.

Figure 14 doPost() method for suspending a server

The method first collects the “VMID” or the virtual machine ID

that the user requested to be shut down, then after it makes sure it’s

not empty the Virtual machine is paused on line 55. This is very

similar to how all operations on the system are carried out, similar

operations are done on the UnpaseServer.java and the

DeleteServer.java servlets.

4.3 Graphical User Interface/ JavaScript

The main page (index.jsp) finished page looks like the below

figure when there are no virtual machines instances launched in the

23

OpenStack implementation.

Figure 15 Front page with no servers running

Once an image has been selected from the dropdown box the user

then selects which flavour machine they want represented as

colours on the left. The user can then drag that machine to the

running box which will then launch a virtual machine using the

image selected and the flavour details.

The below figure is what a machine looks like after a successful

deployment of a server using this application.

Figure 16 Front page with a successful launch of a VM

24

As can be seen by the figure above the machine has now been

updated and added to the current servers list and a success message

is displayed. To prove that the instance is running the OpenStack

dashboard can be opened up and the Virtual machine details can be

confirmed there.

Figure 17 OpenStack Horizon Dashboard showing the Virtual machines state

Here it can be seen that the instance has been made with the same

name and IP address, as well as having the same flavour and image

selected in this example. When the user wants to pause the virtual

machine instance which will shut off the virtual machine all they

need to do is drag the image from the running box in to the pause

box. This sends the VMID to the PauseServer.java servlet that then

shuts down the virtual machine. After successful completion of this

operation the screen should look like so:

Figure 18 Output when VM is paused

And once again this change can be seen in the OpenStack horizon

dashboard:

25

Figure 19 Horizon dashboard to show paused server

The server can then be shut off by dragging the image in to the bin

image and that will run the Delete server servlet.

The JavaScript that is used to control the events of when images

are dropped is done in to the “target” are which is the running box

in the application.

Figure 20 Code for the drop functionality in JavaScript

At the start of this drop function, there is an attempt to collect data

from the image that has been dropped, such as if it has a virtual

machine ID or if it has a flavour ID located in the value class of the

26

dropdown box list of images. On line 233 it asks if the location of

the image is dropped is on the running box. Inside of that if

statement there is a quick check to make sure an image has been

selected before the user attempts to start a virtual machine. The

error message looks like this:

Figure 21 Warning message example from the application

On line 241 and line 257 we check to make sure if the image is

already associated with a virtual machine i.e. if it has a VMID a

new image is created with ids based on its size and

unpauseserver(VMID) method is run. If the image is not associated

with a VMID then the application assumes the user is trying to

create a new instance. It creates a new image in the box and starts

the method createServer(window.imageID, flavourID) which sends

the data of the flavour and image selected to the method. The

methods createServer() and unpauseserver() all behave the same

way with only slight changes to the URL the message is sending to

27

and the data it is sending.

Figure 22 JQuery code for outputting POST to Servlet

The code above is an example of how data was sent to the server

using JQuery. The URL to the server is specified and the data is

collected an inserted in to the POST and it is then shipped to the

servlet. If it encounters an error it returns an error message and if it

returns successfully then it displays a success message. The rest of

the methods work the same way except for small changes to the

URL and the data.

This is an overview on how the JavaScript behaves by reacting to

drop events and running methods to send the relevant information

to the Servlets After every drag and drop action is completed the

page needs to reload to get the newest system information , so a

method has to be implemented to draw the images in the box when

the page loads.. A section in JavaScript was made so that when a

server was already running, the JavaScript will generate the correct

flavour image with its virtual machine ID inside of it, in the box

that corresponds to the state of the machine i.e. if it’s running it

will be in the running box. This is carried out by this section of

code in the index.jsp page

28

Figure 23 Code from JavaScript on how images are drawn in to boxex

The image goes through the list of data about the current running

servers, it then checks to see what flavour it is on line 87. If it is

that flavour which in this case is the small flavour it will clone the

small server image. Then it needs to find out if the server is

paused or running so it searches the node to see if it has the word

“PAUSED” or “SUSPENDED” in it. If the server is in the paused

state then the image will be drawn to the “paused” box (#div2) and

if it is in the running state then the server is put in the “running”

box. The while loop variable is then reduced and it moves on to the

next item in the list. The JavaScript checks against all three image

flavours that have similar methods like the one shown above.

4.4 Problems

Coding in Eclipse IDE framework made the project much easier to

code. The platform handles all the hosting part of this project, all

that is needed is a link to a tomcat server and eclipse will host it for

you. There were a few issues in implementing this project the first

was the network in UCC. The OpenStack implementation was on

another separate network in UCC which made it difficult to gain

access to the network. Because of this there is no way to access the

UCC OpenStack from outside the UCC network. To fix this

problem more RAM was purchased for my computer at home so

that it can have the minimum specifications to run OpenStack. This

allowed for more time to get experience on how a Cloud

environment worked. Another problem faced during the

implementation had to do with Eclipse, although the IDE made it

simple once the process of setting up this project to work on

another machine is quite difficult and made version control very

difficult in this project. Normally Git would be used in software

29

projects like this, but it ended up being impractical in this project

due to external jars/tomcat and file permission issues. Instead I

used Bazzar in this project it worked much better than Git did.

5 Evaluations

As this project was a software development project, the two ways

that can be used to test the project are:

1. Code testing

2. Surveys

It was decided that in order to determine that the code outputs

correctly was to check ID the html file that the programme is

outputting is valid. It is also crucial to get feedback from users

about the usability of the software, and if possible to collect data

from users with past experience using Cloud management

software.

5.1 HTML validating

The first area in the code testing was to make sure that the JSP file

was outputting the correct HTML. The validation of the HTML

code was carried out by running the test on

https://validator.w3.org/. Although no errors can be seen from the

browser that doesn’t always mean that the HTML code is correct.

After running the HTML validator on the project there were over

41 errors in total just on the main page alone. Most of these errors

were simple errors including not writing “type=” after some tags

on the page.

Other errors showed big inconsistencies in the writing of the

HTML that revealed flaws in the image dragging. This error was

creating difficulties for the server images to be dragged in to the

boxes and the bin. Fixing these errors in the HTML resulted in the

most successful test that could have been done to help usability on

the webpage.

Once the page was successfully validating on the main page, the

next step was to make sure that all other pages are producing valid

html pages. The HTML page test validation was run several times

https://validator.w3.org/

30

after turning on/off servers and changing image selections. They all

produced valid HTML pages as shown below.

Figure 24 HTML 5 validator output

5.2 CSS Validator

The CSS validator like the HTML validator was crucial to ensure

the CSS code was correct and behaving as expected.To do this the

W3C school CSS validation service was use at

https://jigsaw.w3.org/css-validator/. There are many reason why

someone would want to make sure the CSS is valid:

 Validation as a debugging tool: Not all programs handle

errors gracefully and many will handle errors in the CSS in

different ways. Making sure the CSS is valid will ensure it

runs the same on all browsers.

 Validation for future proofing: Just because a application

runs correctly on a number of browsers today does not

mean that it will work in the future. By checking that the

CSS complies with the web standards will security that the

code should work in the future.

 Easier maintenance: By making sure that the HTML/CSS

is valid and complies with the web standard makes the code

https://jigsaw.w3.org/css-validator/

31

much easier to maintain even if developed or changed by

another person.

 Valid CSS/HTML can lead to a better score: Google

search algorithm checks all pages to make sure that the

pages have valid pages. If the pages have errors they will be

ranked lower in Googles search queries. If the project was

to be released it would be crucial to the success if it was

given a high search ranking.

Due to all these reasons the validation of the CSS was crucial to

ensure the successful running of the project. When the validator

was run on the project only one error came back and it was fixed

immediately and now the project is validated in CSS. These test

are very important so that the user design of the project doesn’t

have the same problems that some of the other Cloud computing

frameworks. (Goyal, 2010)

Figure 25 CSS Validation output

32

Figure 26 Code from CSS validation output

The application has been tested on and works very well on chrome

and Internet explorer. Further development is needed to get the

application working in more browsers such as Firefox and Safari.

The only problems that occur on the application are generally

networking issues, but the OpenStack4J error handling makes it

very easy to fix the problem. If this was to be developed on access

to a network with admin privileges there wouldn’t be any

networking problems at all.

5.3 Survey

As this project depends so much on usability the most efficient test

that could be done for this project was to take a survey of a group

of users after they tried out the project. A survey was made using

33

Google Forms, where a task was giving to the user taking the

survey to create an Ubuntu virtual machine using the programme,

then to shut down the sever and to restart it again.

Almost all users were able to complete the task without any

assistance at all which indicated high degree of usability that the

users were familiar with. The Survey then asked the user if they

had any previous experience using cloud management software

before, if they had then follow up questions are asked comparing

the difference between using whatever cloud management software

that the user has used before and using the system supplied in this

project. The questions were to determine if the user found using the

project system was easier or harder than using it the original way.

The survey also asked if the user had any feedback on the project.

On the day of the Computer Science 4th year project open day users

could choose to fill out the survey on the computer next to the one

that hosted the project or the user could scan a QR code linking to

the survey to complete on their phone.

Figure 27 QR code to survey shown on open day

In total fourteen users completed the survey with varying degrees

of experience with previous cloud computing software.

The first question asked the user to grade how hard the task was

that they had to complete where 1 was very easy and 5 was very

difficult. The results were as follows:

34

Figure 28 Difficulty to complete task

The results show that most users were able to accomplish the task

very easily and the rest (35.7%) were still able to accomplish the

task easily or in a normal amount of time. No users found the

programme difficult or very difficult to use.

The next question asked users to rate how useful was the

information that was provided to them, 1 being very useful and 5

representing not useful.

Figure 29 graph for information usefulness

As can be seen by the results above the same percentage of people

found the information provided to be very useful. However this

time users were more dissatisfied with the information shown to

them with one user rating the information as not helpful. This is a

clear indication that improvements will be required to improve the

information given to the user, by making the messages clearer and

to display information in an intuitive way such an interactive

graphs.

35

Figure 30 Pie chart for previous experience

We can see from this pie graph that the majority of people who

took the survey have previous experience with cloud computing

software. These people were judged to provide better feedback

than users who have never used cloud computing software before,

and follow up questions were only asked to this group of people.

Figure 31 Pie chart comparison of ease

From the results above an overwhelming majority of users that did

use previous cloud computing software found the application in

this project to be easier than what they are used to. This was the

main objective of the project and this indicated that the design used

in this project for drag and drop functionality really does provide

users an easier and more user friendly ptogramme to accomplish

36

tasks on the system.

Figure 32 Graph of speed of application

From the graph displayed above it can be seen that over 85% of

users found that the application was not only easier to use but also

quicker in its operations. This is a great benefit to end users as

saving time doing each operation is generally seen as good user

interface design.

Some feedback was left on the survey but the feedback received in

person was more detailed than the responses on the survey.

Overall from this survey it can be seen that the project was a

success with the majority of people finding the new application

faster and easier than conventionally used cloud management

software. Any follow up surveys would include questions asking

users what cloud computing software they have used and to

compare this application with other applications that users have

tried.

6 Conclusions

6.1 What has been accomplished?

The objective of this project was to make a graphical user interface

that can be used to manipulate a cloud computing network by

dragging 2-D images. While this objective has been reached further

37

improvement work will be undertaken to the functionality of the

application. The server side code has been developed and now the

next step for this application is to add additional features. So far

the system displays basic information about the system such as

what images are installed, CPU/RAM sizes, IP addresses, and

virtual machine names. Feedback suggests that this information

isn’t enough and it could be done better. This information will be

crucial to any future success of this software.

The implementation of this project as a web based application

proved to be a success making the application much easier to

access and use. Once the application was set up on the network its

ease of use was found to be very helpful to users.

During this project I set out to learn about how cloud networks

operate and how they function on a deeper level. Being able to

manipulate virtual machines on a network was a great learning

experience and I have gained a tremendous amount of knowledge

from this project. Having set up a cloud implementation of

OpenStack on my own computer provided a learning experience

that normally wouldn’t be experienced otherwise.

6.2 What can be done next?

From the feedback on the survey and from some of the feedback

received from others at the project open day, it is clear that the

main fall back of the application is the need for more at a glance

feedback from system specific information. Information such as

the total amount of CPU cores available vs amount of CPU cores

used. One very helpful advice received on the day was to used

Google Charts, a JavaScript tool to make interactive graphs from

system information. An example is to make a pie chart to display

the hard drive space of the system so that users can at a glance

know how much system storage there is left.

After the project was finished all of the core functions for the

OpenStack library have been used in the application. The “Glance”

API was used for the image manipulation and “Nova” for its

computing features such as turning off and on virtual machines.

38

The OpenStack library has much more optional functionality than

this. Currently the application only publishes virtual machines to

one public network; using the “Neutron” features for network we

could add more options for the user to create networks and subnets

of their own. Using the servlet template we can add functionality

for this as long as a tool can be found for displaying this

information to the user. This way more features can be added on to

the existing framework modularly. It would allow for faster and

easier developments especially with the adaptation of interactive

graphs. Adding more features would add more incentive to use the

software as not only will it be easier to use and faster but it will be

as comprehensive as other cloud management systems.

Due to the nature of the user design interface and the drag and drop

manoeuvres of the images; it would be very interesting to develop

this project as a mobile phone app. Allowing users to easily

control their cloud networks from their phones would be an

interesting feature. There are different ways this could be achieved.

An android app could be developed to interface with the data from

the network. This way a user would be more immersed in an

application and have access to more usability functionality. The

project could also be devolved so that the webpage can responsive.

And have mobile phone specific functionality. This would be a

very interesting experiment to see if the same functionality display

from a desktop screen can fit in to a mobile phone screen. (Andreas

Konstantinidis, 2012)

A suggestion from Dr. Dapeng Dong was that additional

functionality could be designed allowing a user to right click a

specific virtual machine and the programme to provide an option to

ssh to that machine should appear. This would be an interesting but

difficult development to do as JavaScript will not allow users to

open ssh connections from the browser. It may still be possible to

do in the future by implementing it with FireSSH, a JavaScript

based plugin for browsers. This would make it very easy for users

to quickly go in and make individual changes to each machine by

quickly connecting to it via ssh

Overall the project main goals were accomplished users can now

do basic cloud computing manipulation easier and faster using the

application. The application shows basic cloud system data that are

39

updated in near real time. The knowledge gained from this project

is very valuable and the experience was very fun and exciting.

Appendix

Works Cited

Andreas Konstantinidis, C. C.-Y. (2012). Demo: a programming cloud of

smartphones. MobiSys '12 Proceedings of the 10th international

conference on Mobile systems, applications, and services, 465-

466.

Goyal, P. (2010). Enterprise Usability of Cloud Computing

Environments: Issues and Challenges. 2010 19th IEEE

International Workshops on Enabling Technologies:

Infrastructures for Collaborative Enterprises.

Juhani Toivonen, S. H. (n.d.). EASI-CLOUDS - Extended Architecture

and Service Infrastructure for Cloud-Aware Software. D5.10 –

Final Report on Cloud Computing, 90.

Omar SEFRAOUI, M. A. (October 2012). OpenStack: Toward an Open-

Source Solution for. International Journal of Computer

Applications (0975 - 8887).

Rekimoto, J. (1997). Pick-and-drop: a direct manipulation technique for

multiple computer environments. UIST '97 Proceedings of the

10th annual ACM symposium on User interface software and

technology, 31-39.

